< Back to previous page

Project

Influencing interactions with molecules by controling surface modifications.

Metal oxides possess a high chemical and mechanical stability making them ideal support materials in several applications like catalysis and separation. Unfortunately, metal oxides don't have controllable selective interactions as only hydroxyl groups are present on the surface. Organic surface modification can solve this. The most used method is organosilylation, developed for silica materials. However, silica has a limited chemical stability and a necessary evolution to robust and inert supports is needed. Titania and zirconia are good and robust alternatives for silica but organosilylation results in unstable bonding of the functional groups. New and alternative methods like the organophosphonic acid modification and the recently co-developed (by VITO and UA) patented Grignard modification are promising and result in unique surfaces. But thorough fundamental insights in the influence of synthesis conditions on the physicochemical surface properties and the interactions between surface and surrounding molecules is lacking. This is exactly the aim of this work: first the impact of synthesis conditions, type of modification method and functional groups on the physicochemical surface properties is studied. Secondly, differences in the surface properties that have an impact on the interactions of the surface with specific target molecules are identified. Finally, we will set the first steps in solving solvent-solute interactions by looking at the impact of functional groups on membrane filtration.
Date:1 Oct 2015 →  30 Sep 2017
Keywords:SURFACE ANALYSIS
Disciplines:Analytical chemistry, Macromolecular and materials chemistry
Project type:Collaboration project