< Back to previous page

Publication

Enantiomorphing Chiral Plasmonic Nanostructures: A Counterintuitive Sign Reversal of the Nonlinear Circular Dichroism

Journal Contribution - Journal Article

Plasmonic nanostructures have demonstrated a remarkable ability to control light in ways never observed in nature, as the optical response is closely linked to their flexible geometric design. Due to lack of mirror symmetry, chiral nanostructures allow twisted electric field hotspots to form at the material surface. These hotspots depend strongly on the optical wavelength and nanostructure geometry. Understanding the properties of these chiral hotspots is crucial for their applications; for instance, in enhancing the optical interactions with chiral molecules. Here, the results of an elegant experiment are presented: by designing 35 intermediate geometries, the structure is enantiomorphed from one handedness to the other, passing through an achiral geometry. Nonlinear multiphoton microscopy is used to demonstrate a new kind of double-bisignate circular dichroism due to enantiomorphing, rather than wavelength change. From group theory, a fundamental origin of this plasmonic chiroptical response is proposed. The analysis allows the optimization of plasmonic chiroptical materials.
Journal: Advanced Optical Materials
ISSN: 2195-1071
Issue: 14
Volume: 6
Publication year:2018
Keywords:chirality, chiroptical effects, metamaterials, nonlinear optics, plasmonic
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:10
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open