< Back to previous page

Project

Corneal endothelial regeneration through mechanotaxis and targeted drug delivery: Curing a blinding disease.

The corneal endothelium covers the inner surface of the cornea, the transparent window of the eye. When this cell layer gets damaged, this leads to painful blindness, necessitating transplantation. Currently, transplantation is limited by a severe donor shortage. That is why researchers aim to fabricate a lab grown tissue to treat blind patients and shorten waiting lists. However, my PhD project aims to develop an innovative membrane with the aim to eventually exploit in vivo regeneration without transplantation of cells. More specifically, this project includes the in vitro development of a membrane that is covered with miniscule patterns, which have 2 functions. On the one hand, the shape of the pattern itself will act as one-way signals that guide corneal endothelial cells to the middle of the cornea to restore its original barrier function. On the other hand, the patterns contain drugs that are specifically released when cells overgrow the patterns, thereby accelerating the process even further. I have 2 different strategies for its content, namely filling these patterns with either growth factors or exosomes secreted by stem cells. Eventually, I will establish a proof-of-principle in rabbits to prove the efficiency. Advantages are that this is a potential cost-effective off-the-shelf product that is safer for the patient as it does not involve any cells compared to cell therapy or transplantation and that the applicability stretches beyond the field of ophthalmology.
Date:1 Nov 2019 →  30 Oct 2021
Keywords:DRUG DELIVERY
Disciplines:Tissue engineering