< Back to previous page

Project

Progress novel assets (one FIH start) for nontubercular mycobacteria that may act synergistically with bedaquiline and cytochrome bc drugs (RespiriNTM).

Non-tuberculous mycobacteria, such as Mycobacterium avium complex (MAC) and Mycobacterium abscessus, cause lung diseases resembling TB, mainly in immune-compromised patients or patients suffering from other lung diseases (e.g. cystic fibrosis). The incidence and prevalence of lung diseases caused by NTM are increasing worldwide. Importantly, in the US and Japan, as well as in other areas of the world where TB has declined, NTM disease is already at least three times more prevalent than TB. Treatment of NTM diseases relies on antibiotic combinations, however the drugs active against NTM are rather few and mainly different than those active against TB. These NTM treatments for the most common species (MAC and M. abscessus) are much less active than the current anti-TB regimen is for TB treatment. It is often necessary to administer antibiotic combinations for at least 12-24 months. The long and complex drug regimen that is currently recommended as a treatment against NTM-caused diseases carries the risk of inducing resistance in NTM. Several studies have already shown the existence and emergence of multidrug resistant NTM. The overall objective of RESPIRI-NTM is to find new drug candidates as potential components of a new, more efficient combination drug regimen against NTM that is less prone to resistance and allows shortening of treatment duration for NTM and multidrug-resistant NTM. Such a drug combination will synergistically target the energy metabolism of NTM or complementary targets. To achieve this, we will advance recently discovered inhibitors of the mycobacterial respiratory pathway. In addition, we will perform a novel, phenotypic screen in order to identify novel targets in NTM. Finally, we will also target host-factors that are essential for the intracellular survival of NTM. Together, we present a comprehensive plan to find novel strategies to combat non-tuberculous mycobacteria, shorten treatment time and reduce chances of drug resistance.
Date:1 May 2019 →  Today
Keywords:ANTIMICROBIAL RESISTANCE
Disciplines:Medicinal chemistry
Project type:Collaboration project