< Back to previous page

Publication

Dynamic Performance of a Squeeze Film Damper with a Cylindrical Roller Bearing under a Large Static Radial Loading Range

Journal Contribution - Journal Article

Turbomachine rotors, supported by little damped rolling element bearings, are generally sensitive to unbalance excitation. Accordingly, most machines incorporate squeeze film damper technology to dissipate mechanical energy caused by rotor vibrations and to ensure stable operation. When developing a novel geared turbomachine able to cover a large power range, a uniform mechanical drivetrain needs to perform well over the large operational loading range. Especially, the rotor support, containing a squeeze film damper and cylindrical roller bearing in series, is of vital importance in this respect. Thus, the direct objective of this research project was to map the performance of the envisioned rotor support by estimating the damping ratio based on the simulated and measured vibration response during run-up. An academic test rig was developed to provide an in-depth analysis on the key components in a more controlled setting. Both the numerical simulation and measurement results exposed severe vibration problems for an insufficiently radial loaded bearing due to a pronounced anisotropic bearing stiffness. As a result, a split first whirl mode arose with its backward component heavily triggered by the synchronous unbalance excitation. Hence, the proposed SFD does not function properly in the lower radial loading range. Increasing the static load on the bearing or providing a modified rotor support for the lower power variants will help mitigating the vibration issues.

Journal: Minds & Machines
ISSN: 0924-6495
Issue: 1
Volume: 7
Publication year:2019
Keywords:Anisotropic bearing stiffness, Cylindrical roller bearing, Split resonance, Squeeze film damper
CSS-citation score:2
Accessibility:Open