< Back to previous page

Publication

Gas‐shearing fabrication of multicompartmental microspheres : a one‐step and oil‐free approach

Journal Contribution - Journal Article

Multicompartmental microparticles (MCMs) have attracted considerable attention in biomedical engineering and materials sciences, as they can carry multiple materials in the separated phases of a single particle. However, the robust fabrication of monodisperse, highly compartmental MCMs at the micro- and nanoscales remains challenging. Here, a simple one-step and oil-free process, based on the gas-flow-assisted formation of microdroplets ("gas-shearing"), is established for the scalable production of monodisperse MCMs. By changing the configuration of the needle system and gas flow in the spray ejector device, the oil-free gas-shearing process easily allows the design of microparticles consisting of two, four, six, and even eight compartments with a precise control over the properties of each compartment. As oils and surfactants are not used, the gas-shearing method is highly cytocompatible. The versatile applications of such MCMs are demonstrated by producing a magnetic microrobot and a biocompatible carrier for the coculturing of cells. This research suggests that the oil-free gas-shearing strategy is a reliable, scalable, and biofriendly process for producing MCMs that may become attractive materials for biomedical applications.
Journal: ADVANCED SCIENCE
ISSN: 2198-3844
Issue: 9
Volume: 6
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:10
CSS-citation score:3
Authors:International
Authors from:Higher Education
Accessibility:Open