< Back to previous page

Project

Integrating the processes that control cell wall biomechanics during cell growth, using CrRLK1L-regulated root hair growth as a model.

Plants grow towards areas favourable for their survival. This is the result of individual cell growth. The latter can only occur when the cell wall, which surrounds plant cells, is not too stiff, yet not too loose. This requires constant monitoring of cell wall biomechanics. How cells sense and control cell wall biomechanics during growth is the central theme of this project. Plants have evolved proteins to monitor and respond to changes in cell wall properties. Members of the 'Catharanthus roseus Receptor-Like kinases 1-Like' (CrRLK1L) protein family serve as cell wall composition sensors during cell growth. In Arabidopsis t. we identified the CrRLK1L ERULUS (ERU), which controls cell wall composition and pectin (cell wall component that controls flexibility) dynamics during root hair growth, presumably together with FERONIA (FER), another CrRLK1L. To understand how cell wall biomechanics are regulated during cell growth we will study (1) the relation between pectin modification and root hair growth, (2) the cell wall properties of ERU and FER mutants, (3) which signals are perceived by ERU and FER, and (4) the functional relation between cell wall pH, pectin, RALFs (cell wall localized small peptide CrRLK1L ligands), Ca2+, ERU and FER signaling in regulating cell growth. Our results will provide an integrated view on the processes that control cell wall biomechanics during cell growth, using ERU and FER root hair growth as a model.
Date:1 Oct 2019 →  30 Sep 2023
Keywords:BIOMECHANICS, CELL GROWTH
Disciplines:Plant cell and molecular biology, Plant developmental and reproductive biology, Plant morphology, anatomy and physiology
Project type:Collaboration project