< Back to previous page

Publication

CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment

Journal Contribution - Journal Article

Advancements in wireless sensor network technologies have enabled the proliferation of miniaturized body-worn sensors, capable of long-term pervasive biomedical signal monitoring. Remote cardiovascular monitoring has been one of the beneficiaries of this development, resulting in non-invasive, photoplethysmography (PPG) sensors being used in ambulatory settings. Wrist-worn PPG, although a popular alternative to electrocardiogram, suffers from motion artifacts inherent in daily life. Hence, in this paper, we present a novel deep learning framework (CorNET) to efficiently estimate heart rate (HR) information and perform biometric identification (BId) using only a wrist-worn, single-channel PPG signal collected in ambulant environment. We have formulated a completely personalized data-driven approach, using a four-layer deep neural network. Two convolution neural network layers are used in conjunction with two long short-term memory layers, followed by a dense output layer for modeling the temporal sequence inherent within the pulsatile signal representative of cardiac activity. The final dense layer is customized with respect to the application, functioning as: regression layer-having a single neuron to predict HR; classification layer-two neurons that identify a subject among a group. The proposed network was evaluated on the TROIKA dataset having 22 PPG records collected during various physical activities. We achieve a mean absolute error of 1.47 ± 3.37 beats per minute for HR estimation and an average accuracy of 96% for BId on 20 subjects. CorNET was further evaluated successfully in an ambulant use-case scenario with custom sensors for two subjects.
Journal: IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS
ISSN: 1932-4545
Issue: 2
Volume: 13
Pages: 282 - 291
Publication year:2019
Accessibility:Open