< Back to previous page

Project

TEM nano-statistics investigations of structural defects in nanostructured materials under static and dynamic loading.

Nanostructured materials are found in many different forms of advanced materials. The properties of these materials strongly depend on their nanostructural features and dedicated characterization tools providing nanostatistical data are indispensable for further development of these novel materials. This project focuses on the application of an innovative combination of advanced transmission electron microscopy high-throughput nanoquantification with in-situ quantified testing methods to unravel the fundamental processes activated at the micro- and nanoscale. The latter control the nucleation, mobility and interaction of crystal defects and the resulting mechanical and thermo-mechanical properties of these materials. This combination of techniques is absolutely unique in Europe and will for the first time provide true quantified data on different fundamental processes such as crystallization in metallic glasses, martensitic phase transformations in shape memory alloys and nano-plasticity and thermally activated mechanisms in nanocrystalline Nickel. These are just a few examples of the broad variety of exciting investigations that will become possible through the objectives of this proposal. The outcome of this project will trigger the synthesis of nanomaterials with improved properties and the design ofnanostructures with novel functionalities.
Date:1 Oct 2015 →  30 Apr 2016
Keywords:NANOTECHNOLOGY, TEM
Disciplines:Ceramic and glass materials, Materials science and engineering, Semiconductor materials, Other materials engineering