< Back to previous page

Publication

Chain of magnetic tunnel junctions as a spintronic memristor

Journal Contribution - Journal Article

© 2018 Author(s). In the context of neuromorphic computation, spintronic memristors are investigated for their use as synaptic weights. In this paper, we propose and experimentally demonstrate a resistive synaptic device based on ten magnetic tunnel junctions (MTJs) connected in a serial configuration. Our device exhibits multiple resistance levels that support its use as a synaptic element. It allows for two operating knobs: external magnetic field and voltage pulses (Spin-Transfer Torque). Moreover, it can be operated in different ways. When varying continuously the amplitude of the voltage pulse and/or the magnetic field, eleven resistance states can be reached. In contrast, if the initial state of the chain is reset between every step, a very large number of levels are reached. Ideally, a total of 2 N resistance levels could be accessible. This coincides well with the desired analog-like behavior in ideal memristors. Since this device consists of a scalable number of N MTJs, and MTJ technology is continuously optimized and improved, the proposed memristor shows promise as a scalable synapse solution for neuromorphic hardware implementations.
Journal: JOURNAL OF APPLIED PHYSICS
ISSN: 0021-8979
Issue: 15
Volume: 124
Publication year:2018
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Government, Higher Education
Accessibility:Open