< Back to previous page

Publication

Influence of Branching of Polythiophenes on the Microporosity

Journal Contribution - Journal Article

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A chain growth polymerization of a branched polythiophene (BT) using a Pd(Ruphos) catalyst, as a promising route to synthesize microporous conjugated polymers with well-defined structures is reported. From N2 adsorptions/desorption isotherm measurements, a Brunauer–Emmett–Teller surface area of 40.7 m2 g−1 is calculated for the BT, significantly higher than that of the linear poly(3-hexylthiophene) (P3HT) (25.7 m2 g−1). The same trend is confirmed by simulations of the two polymer structures, from which a geometric surface area (SAgeo) of 140 ± 15.8 m2 g−1 is calculated for the BT, much more higher than for the P3HT with a SAgeo of 6.7 ± 7.1 m2 g−1. Moreover, the BT is soluble in common organic solvent and is readily processed in membrane with a CO2/N2 selectivity up to 24.
Journal: Macromolecular Chemistry and Physics
ISSN: 1022-1352
Issue: 12
Volume: 219
Publication year:2018
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Accessibility:Open