< Back to previous page

Publication

Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface

Journal Contribution - Journal Article

The objective of the present study was to compare the thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth (suspended cells) and on solid surface (agar-seeded cells). A 3-strain cocktail of S. enterica or L. monocytogenes inoculated in broth or on agar was subjected to heating in a water bath at various set temperatures (55.0, 57.5 and 60.0°C for S. enterica and 60.0, 62.5 and 65°C for L. monocytogenes). The occurrence of sublethally injured cells was determined by comparing enumerations on nonselective (TSAYE) and selective (XLD or ALOA) media. Results showed that the inactivation curves obtained from selective media were log-linear, and significant shoulders (p<0.05) were observed on some of the inactivation curves from TSAYE media. The D-values derived from the total population were higher than those from the uninjured cells. Generally, cells on agar surface exhibited higher heat resistance than those in broth. For S. enterica, cell injury increased with the exposure time, no difference was observed when treated at temperatures from 55.0 to 60.0°C, while for L. monocytogenes, cell injury increased significantly with heating time and treatment temperature (from 60.0 to 65°C). Moreover, the degree of sublethal injury affected by thermal treatment in broth or on agar surface depended upon the target microorganism. Higher proportions of injured S. enterica cells were observed for treatment in broth than on agar surface, while the opposite was found for L. monocytogenes. The provided information may be used to assess the efficacy of thermal treatment processes on surfaces for inactivation of S. enterica and L. monocytogenes, and it provides insight into the sublethally injured survival state of S. enterica and L. monocytogenes treated in liquid or on solid food.
Journal: International Journal of Food Microbiology
ISSN: 0168-1605
Volume: 243
Pages: 70 - 77
Publication year:2017
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:6
CSS-citation score:2
Authors from:Higher Education
Accessibility:Open