< Back to previous page

Publication

Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations

Journal Contribution - Journal Article

Nonlinear modulational instability of wavepackets is one of the mechanisms responsible for the formation of large-amplitude water waves. Here, mechanically generated waves in a three-dimensional basin and numerical simulations of nonlinear waves have been compared in order to assess the ability of numerical models to describe the evolution of weakly nonlinear waves and predict the probability of occurrence of extreme waves within a variety of random directional wave fields. Numerical simulations have been performed following two different approaches: numerical integration of a modified nonlinear Schrodinger equation and numerical integration of the potential Euler equations based on a higher-order spectral method. Whereas the first makes a narrow-banded approximation (both in frequency and direction), the latter is free from bandwidth constraints. Both models assume weakly nonlinear waves. On the whole, it has been found that the statistical properties of numerically simulated wave fields are in good quantitative agreement with laboratory observations. Moreover, this study shows that the modified nonlinear Schrodinger equation can also provide consistent results outside its narrow-banded domain of validity.
Journal: Journal of Fluid Mechanics
ISSN: 0022-1120
Volume: 664
Pages: 313 - 336
Publication year:2010
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:3
Authors:International
Authors from:Higher Education