< Back to previous page

Publication

Regional cardiac motion and strain estimation in three-dimensional echocardiography: A validation study in thick-walled univentricular phantoms

Journal Contribution - Journal Article

Automatic quantification of regional left ventricular deformation in volumetric ultrasound data remains challenging. Many methods have been proposed to extract myocardial motion, including techniques using block matching, phase-based correlation, differential optical flow methods, and image registration. Our lab previously presented an approach based on elastic registration of subsequent volumes using a B-spline representation of the underlying transformation field. Encouraging results were obtained for the assessment of global left ventricular function, but a thorough validation on a regional level was still lacking. For this purpose, univentricular thick-walled cardiac phantoms were deformed in an experimental setup to locally assess strain accuracy against sonomicrometry as a reference method and to assess whether regions containing stiff inclusions could be detected. Our method showed good correlations against sonomicrometry: r2 was 0.96, 0.92, and 0.84 for the radial (εRR), longitudinal (εLL), and circumferential (εCC) strain, respectively. Absolute strain errors and strain drift were low for εLL (absolute mean error: 2.42%, drift: −1.05%) and εCC (error: 1.79%, drift: −1.33%) and slightly higher for εRR (error: 3.37%, drift: 3.05%). The discriminative power of our methodology was adequate to resolve full transmural inclusions down to 17 mm in diameter, although the inclusion-to-surrounding tissue stiffness ratio was required to be at least 5:2 (absolute difference of 39.42 kPa). When the inclusion-to-surrounding tissue stiffness ratio was lowered to approximately 2:1 (absolute difference of 22.63 kPa), only larger inclusions down to 27 mm in diameter could still be identified. Radial strain was found not to be reliable in identifying dysfunctional regions.
Journal: Ieee Transactions On Ultrasonics Ferroelectrics And Frequency Control
ISSN: 0885-3010
Issue: 4
Volume: 59
Pages: 668 - 682
Publication year:2012
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:2
Authors:International
Authors from:Higher Education
Accessibility:Closed