< Back to previous page

Publication

A Fat-Facets-Dscaml-JNK Pathway Enhances Axonal Growth in Development and after Injury

Journal Contribution - Journal Article

Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3'-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism.
Journal: Frontiers in Cellular Neuroscience
ISSN: 1662-5102
Volume: 11
Publication year:2018
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Government, Higher Education
Accessibility:Open