< Back to previous page

Publication

Clinical Evaluation of a Robotic 6-Degree of Freedom Treatment Couch for Frameless Radiosurgery

Journal Contribution - Journal Article

PURPOSE: To evaluate the added value of 6-degree of freedom (DOF) patient positioning with a robotic couch compared with 4DOF positioning for intracranial lesions and to estimate the immobilization characteristics of the BrainLAB frameless mask (BrainLAB AG, Feldkirchen, Germany), more specifically, the setup errors and intrafraction motion. METHODS AND MATERIALS: We enrolled 40 patients with 66 brain metastases treated with frameless stereotactic radiosurgery and a 6DOF robotic couch. Patient positioning was performed with the BrainLAB ExacTrac stereoscopic X-ray system. Positioning results were collected before and after treatment to assess patient setup error and intrafraction motion. Existing treatment planning data were loaded and simulated for 4DOF positioning and compared with the 6DOF positioning. The clinical relevance was analyzed by means of the Paddick conformity index and the ratio of prescribed isodose volume covered with 4DOF to that obtained with the 6DOF positioning. RESULTS: The mean three-dimensional setup error before 6DOF correction was 1.91 mm (SD, 1.25 mm). The rotational errors were larger in the longitudinal (mean, 0.23°; SD, 0.82°) direction compared with the lateral (mean, -0.09°; SD, 0.72°) and vertical (mean, -0.10°; SD, 1.03°) directions (p < 0.05). The mean three-dimensional intrafraction shift was 0.58 mm (SD, 0.42 mm). The mean intrafractional rotational errors were comparable for the vertical, longitudinal, and lateral directions: 0.01° (SD, 0.35°), 0.03° (SD, 0.31°), and -0.03° (SD, 0.33°), respectively. The mean conformity index decreased from 0.68 (SD, 0.08) (6DOF) to 0.59 (SD, 0.12) (4DOF) (p < 0.05). A loss of prescribed isodose coverage of 5% (SD, 0.08) was found with the 4DOF positioning (p < 0.05). Half a degree for longitudinal and lateral rotations can be identified as a threshold for coverage loss. CONCLUSIONS: With a mask immobilization, patient setup error and intrafraction motions need to be evaluated and corrected for. The 6DOF patient positioning with a 6DOF robotic couch to correct translational and rotational setup errors improves target positioning with respect to treatment isocenter, which is in direct relation with the clinical outcome, compared with the 4DOF positioning. Copyright © 2012 Elsevier Inc. All rights reserved.
Journal: INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS
ISSN: 0360-3016
Issue: 1
Volume: 83
Pages: 467 - 474
Publication year:2012