< Back to previous page

Project

Plasma-based cancer treatment: Atomic level simulations.

Cold atmospheric plasmas (CAPs) have attracted significant interest for their promising applications, particularly in cancer therapy. Understanding the anticancer activity of CAP treatment, however, still remains a key challenge. It is largely accepted that the biological effects of CAP are attributed to reactive oxygen and nitrogen species (RONS). It is suggested that CAP-generated RONS regulate key biochemical pathways within intra- and intercellular environments, inducing chemical and physical changes in cells. Yet, the underlying mechanisms are not fully understood. In this project, we aim to gain a better insight into the mechanisms of the effect of CAP on cancer cells, using atomistic simulations to investigate the interaction mechanisms of RONS with 6 different proteins, which play a vital role in cancer (treatment). We use reactive and non-reactive molecular dynamics simulations to study the CAP-induced structural and functional changes in antioxidant, transmembrane and cell-surface proteins, as well as the subsequent effects on their protecting, transporting and binding properties, which will eventually result in cancer cell death.
Date:1 Oct 2018 →  30 Sep 2021
Keywords:CANCER, MOLECULAR MODELLING, PLASMA, SIMULATIONS
Disciplines:Applied mathematics in specific fields, Classical physics, Physics of gases, plasmas and electric discharges, Biochemistry and metabolism, Medical biochemistry and metabolism