< Back to previous page

Project

High-efficiency Sensorless Control of a BLDC Motor using Sinusoidal Currents.

A Brushless DC Machine (BLDC) is the optimal motor to use in applications where a more or less constant, controlled, high rotational speed is required. Typical examples include driving: the compressor of a cooling system including refrigerators and air-conditioning, the propellers of a drone, fans and pumps in general, …. The BLDC is responsible for the lion share energy usage of these applications. Moreover, cooling systems consume a lot of energy worldwide because of their ubiquitous presence. On the other hand, for battery fed systems such as drones there is strong desire for increased autonomy. This means there is a strong desire to reduce the energy usage of BLDC driven systems. BLDC motors are typically driven with a square wave current. On the other hand, using sine wave currents could result in an energy efficiency increase of 10%. However, typical BLDC algorithms lack feedback to drive the machine with sine waves. Using an encoder to obtain this position feedback would increase the cost and complexity of the drive system and can be impossible due to limited mounting space. Therefore, so-called sensorless algorithms which estimate feedback signals based on easily measurable voltage and current signals, are of interest. Consequently, the central research question of this STIMPRO is formulated as: Develop and implement a sensorless algorithm to provide feedback for a BLDC drive algorithm using sinusoidal current waveforms and validate its energy saving potential. As a starting point this STIMPRO will consider an estimation algorithm, developed by the promotor, for stepping motors, to use in BLDC drives. This STIMPRO will be used as a kick-start to initiate electrical motor control research at UAntwerp. This project will serve as leverage to move the activities off the promotor in motor control, who started at ZAP at UAntwerp the 1st of September 2018, previously established at UGent to UAntwerp. To do so, the STIMPRO will be used to hire a researcher who will submit an FWO SB proposal. However, if FWO funding is rejected we will not finish this project empty handed. Given the work plan defined in the STIMPRO, and the experience of the promotor the project will certainly result in publications, a test bench, added experience for the hired researcher and the exploration of possible bilateral collaboration with Flemish companies on the subject. The work done in this STIMPRO will be beneficial for the Op3Mech research group as adding research on electrical motors is a vital in the broader robotics research. Moreover, the education on drivelines at the Faculty of Applied Engineering is currently not supported by academic research. Therefore, the research activities initiated in this STIMPRO are vital to continue education on these topics.
Date:1 Jul 2018 →  31 Dec 2019
Keywords:MOTION CONTROL, ELECTRICAL MACHINES, DRIVELINES
Disciplines:Control systems, robotics and automation, Design theories and methods, Mechanics, Mechatronics and robotics, Computer theory