< Back to previous page

Publication

Crystal growth of the Nowotny chimney ladder phase $Fe_{2}Ge_{3}$

Journal Contribution - Journal Article

Subtitle:exploring new Fe-based narrow-gap semiconductor with promising thermoelectric performance
A new synthetic approach based on chemical transport reactions has been introduced to obtain the Nowotny chimney ladder phase Fe2Ge3 in the form of single crystals and polycrystalline powders. The single crystals possess the stoichiometric composition and the commensurate chimney ladder structure of the Ru2Sn3 type in contrast to the polycrystalline samples that are characterized by a complex microstructure. In compliance with the 18-n electron counting rule formulated for T-E intermetallics, electronic structure calculations reveal a narrow-gap semiconducting behavior of Fe2Ge3 favorable for high thermoelectric performance. Measurements of transport and thermoelectric properties performed on the polycrystalline samples confirm the formation of a narrow band gap of similar to 30 meV and reveal high absolute values of the Seebeck coefficient at elevated temperatures. Low glass-like thermal conductivity is observed in a wide temperature range that might be caused by the underlying complex microstructure.
Journal: Chemistry of materials
ISSN: 0897-4756
Volume: 29
Pages: 9954 - 9963
Publication year:2017
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:10
CSS-citation score:2
Authors:International
Authors from:Higher Education
Accessibility:Open