< Back to previous page

Project

The study of classical and alternative activation in human induced pluripotent stem cell-derived microglia and macrophages.

Neuroinflammation occurs in all central nervous system (CNS) pathologies and can be defined as the activation of local and peripheral infiltrating immune cells, with the key players being brain-resident microglia and blood-borne infiltrating macrophages. While growing evidence ascribes different roles to microglia and macrophages in neuro-inflammation, the main interest in both phagocytes, with regard to therapeutic strategies, is their ability to obtain different activation states, ranging from pro-inflammatory (M1) to anti-inflammatory (M2) activation. These new revelations led to many studies nowadays, which are investigating immune modulation as a potential therapeutic strategy to treat CNS pathologies.However, since existing pre-clinical models for the study of neuro-inflammation are based on either human cell lines or rodent models, this new and potential therapeutic strategy creates the need for more reliable pre-clinical models for human neuro-immune research. Therefore, with this project, we aim to develop an in vitro assay to study and modulate activation states in human neuro-inflammation by using human induced pluripotent stem cell (hiPSC)-derived microglia and macrophages. For this, we will introduce and validate in vitro differentiation protocols for hiPSC-derived microglia and macrophages. Phenotypical characterization will be performed by using known markers for immunocytochemistry and flow cytometry. Next, functional analyses of the developed hiPSC-derived microglia and macrophages will include (i) migration assays for chemokines CX3CL1 and CCL2, known to attract, respectively, microglia and macrophages; (ii) phagocytosis assays; and (iii) M1-M2 priming experiments, determining the polarising capacity of both microglia and macrophages by flow cytometry and ELISA. With this research project, our main aim is to meet the urgent need for novel in vitro human neuro-inflammation models, but with a successful outcome, we will also achieve a major step forward towards less animal testing.
Date:1 Apr 2018 →  31 Mar 2019
Keywords:MICROGLIA, MONOCYTES, HUMAN IPSC
Disciplines:Immunology, Neurosciences, Biological and physiological psychology, Cognitive science and intelligent systems, Developmental psychology and ageing