< Back to previous page

Project

Moiré patterns induced in bilayer van der Waals heterostructures

Two-dimensional (2D) materials are currently a very important topic in materials science due to their unique properties and high crystal quality. An important property of these materials is that they can be stacked on top of each other regardless of the mismatch between the unit cells and with almost any twist angle between the two lattices. This is thanks to the weak van der Waals interaction that acts between different layers. However, researchers have found that the properties of these stacked structures can be very different from its constituents, they not only dependent on the choice of 2D materials used for its construction but are also significantly influenced by the orientation of the two lattices. A difference in lattice constant and/or misorientation of the two lattices results in the appearance of a periodic superlattice structure called moiré pattern. Thus, the types of 2D materials used for stacking and the period of moiré pattern can be in principle used for the design of novel materials with desirable properties. In this project we will focus on the formation of moiré patterns as generated by stacking two monolayers on top of each other and their consequences on the different physical properties of the heterostructure. The effect of internal and external applied strain will be considered.
Date:1 Oct 2017 →  30 Sep 2020
Keywords:CONDENSED MATTER PHYSICS, GRAPHENE
Disciplines:Classical physics, Elementary particle and high energy physics, Other physical sciences
Project type:Collaboration project