< Back to previous page

Project

Evaluation and simulation of the contact pressure in biological intercalary reconstruction surgery after bone sarcoma resection.

Bone cancer affects children and young adults and requires wide removal of bone, leaving large defects. In order to save the limb and to restore its function in a lasting way, dead bone from bone banks or sterilised removed bone (graft) is used to fill the defect and is fixed by plates and screws. Still, in some patients a gap between the dead graft and the remaining living bone is seen, causing a delayed healing which leads to prolonged non-weight bearing periods (>1 year) and reoperations. We aim to reduce the healing time by introducing a predefined compression force to a graft, comparable to methods used in fracture fixation and megaprosthesis ingrowth. However, no literature is available evaluating the compression force and its effect on graft healing. Moreover, as bone cancer is extremely rare, this small patient group is often ignored for research funding to improve the current knowledge. We need to reproduce this compression force in a reliable way in different patients and different bone parts. Therefore we need to develop a standardised surgical procedure and determine the relation between the compression force and the surgical variables, eg screw positioning. Data from in vitro cyclic loading experiments and the patient's characteristics will be used for virtual simulation of compression force during level walking. These data will be essential for the future introduction and development of innovative techniques such as patient-specific instruments and implants.
Date:1 Oct 2017 →  30 Sep 2019
Keywords:ORTHOPAEDICS
Disciplines:Orthopaedics, Surgery, Nursing
Project type:Collaboration project