< Back to previous page

Publication

Identification of pavement material properties using a scanning laser Doppler vibrometer

Book Contribution - Book Abstract Conference Contribution

This paper presents an inverse modeling approach to estimate mechanical properties of asphalt concrete (i.e. Young's modulus E, Poisson ratio v and damping coefficients). Modal analysis was performed on an asphalt slab using a shaker to excite the specimen and an optical measurement system (a Scanning Laser Doppler Vibrometer or SLDV) to measure the velocity of a measurement grid on the surface of the slab. The SLDV has the ability to measure the vibration pattern of an object with high accuracy, short testing time and without making any contact. The measured data were used as inputs for a frequency domain model parameter estimation method (the Polymax estimator). Meanwhile, natural frequencies and damping ratios of the system were calculated using a Finite Element Modeling (FEM) method. Then, the Modal Assurance Criterion (MAC) was used to pair the mode shapes of the structure determined by measurements and estimated by FEM. By changing the inputs of the FEM analysis (E, v and damping coefficients of the material) iteratively and minimizing the discrepancy between paired natural frequencies and damping ratios of the system estimated using the Polymax estimator and calculated by FEM, the Young's modulus, Poisson ratio and damping coefficients of the asphalt slab were estimated.
Book: Proceedings of the 12th International AIVELA Conference on Vibration Measurements by Laser and Noncontact Techniques : Advances and Applications, 29 June-1 July 2016, Ancona, Italy / Tomasini, Enrico Primo [edit.]
Number of pages: 13
Publication year:2016